imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand and simulate heat transfer mechanisms, including conduction, convection, and radiation, in different materials and environments.
  • Explore and analyze key thermodynamic cycles, such as Rankine, Brayton, and Carnot, and their applications in energy systems.
  • Develop skills in evaluating temperature distribution and energy efficiency in thermodynamic processes.
  • Learn to optimize heat transfer systems for improved performance and energy conservation.
  • Gain practical experience in applying thermodynamics principles to solve real-world engineering challenges.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Environmental Engineering and Sustainability

This XR simulation equips students with knowledge and skills in waste management, pollution control, and sustainable design practices. Students engage in virtual scenarios to design water treatment plants, air pollution control systems, and waste recycling facilities. Interactive lessons emphasize evaluating the environmental impact of construction projects and applying green building practices. The simulation provides feedback on reducing carbon footprints, improving energy efficiency, and achieving sustainability goals.

Electrical Machines and Motor Control

The Electrical Machines and Motor Control module provides virtual environments where students can operate and analyze various motors and generators, including induction, synchronous, DC, and stepper types. Through interactive lessons and simulations, students explore motor control techniques and performance characteristics, gaining insights into efficiency, torque-speed relationships, and power factor correction.

Ventilator Weaning and Extubation Procedures

Innovatively train students on ventilator weaning and extubation procedures using XR simulations. This immersive experience helps learners assess patient readiness, adjust ventilator settings, and safely perform extubation for a smooth transition to spontaneous breathing.

Renewable Energy Systems (Solar, Wind, and Battery Storage)

The Electromagnetics and Wave Propagation module offers virtual simulations of renewable energy systems, including solar power, wind turbines, and battery storage. Through interactive exercises, students analyze energy conversion efficiency, system design, and grid integration, gaining a deeper understanding of electromagnetic interactions and wave propagation in renewable energy technologies.

Structural Analysis and Design

This XR simulation teaches students the principles of structural analysis and the design of buildings, bridges, and other infrastructures. Virtual scenarios allow students to analyze the strength, stability, and behavior of structures under various loads (e.g., dead loads, live loads, wind loads, seismic loads). Students use interactive tools to design beams, columns, trusses, and frames, selecting materials like steel, concrete, and timber. The simulation provides feedback on stress distribution, load-bearing capacity, safety factors, and compliance with engineering standards, helping students make sound design decisions.

Aerodynamics and Fluid Dynamics (CFD)

Explore the principles of aerodynamics and computational fluid dynamics (CFD) to analyze and optimize airflow around aircraft and spacecraft. Experience virtual simulations that allow you to visualize airflow patterns, pressure distribution, lift, drag, and turbulence across aerodynamic surfaces. Experiment with refining wing shapes, airfoils, and control surfaces to enhance flight performance. Gain insights through real-time feedback on aerodynamic efficiency, drag reduction, and flight stability in varying conditions.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top