imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles of sustainable mechatronics design, emphasizing energy efficiency and resource management.
  • Analyze energy consumption across various mechatronic systems and processes through virtual simulations.
  • Optimize systems for energy efficiency, reduce waste, and enhance sustainability through interactive scenarios.
  • Assess the environmental impact of design choices, focusing on minimizing energy usage and maximizing cost savings.
  • Receive feedback on design decisions to improve energy efficiency and promote environmentally responsible mechatronic solutions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Thermodynamics and Heat Transfer

Provide hands-on experience in understanding thermodynamic processes and heat transfer mechanisms through immersive XR simulations. Virtual labs enable students to simulate processes like conduction, convection, and radiation across various materials and environments. Interactive scenarios allow exploration of thermodynamic cycles, such as the Rankine, Brayton, and Carnot cycles, offering a comprehensive understanding of energy systems. Real-time feedback helps students analyze temperature distribution, energy efficiency, and system optimization, fostering practical insights into thermodynamics and heat transfer in engineering applications.

Spacecraft Design and Orbital Mechanics

Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.

Robotics and Mechatronics Integration

Provide students with hands-on experience in designing, programming, and integrating robotic systems with mechanical components through immersive XR simulations. Students will work with virtual robotic arms and mechatronic systems, programming movements, adjusting sensors, and controlling actuators. The simulation includes interactive scenarios for integrating mechanical and electronic systems using sensors, motors, and control logic. Students will receive real-time feedback on robotic precision, response time, and the overall performance of the integrated systems.

Electrical Machines and Motor Control

The Electrical Machines and Motor Control module provides virtual environments where students can operate and analyze various motors and generators, including induction, synchronous, DC, and stepper types. Through interactive lessons and simulations, students explore motor control techniques and performance characteristics, gaining insights into efficiency, torque-speed relationships, and power factor correction.

Cleanroom Procedures and Protocols Simulation

Master the essential cleanroom procedures for semiconductor manufacturing through immersive XR simulations, focusing on proper attire, cleanliness, and contamination control. Apply virtual training to enter, operate, and maintain a cleanroom environment with strict adherence to industry protocols.

Metal Cutting and Preparation Simulation

The Metal Cutting and Preparation Simulation immerses users in various metal cutting techniques such as oxy-fuel, plasma cutting, and grinding, all essential for preparing metals for welding. The simulation includes interactive scenarios for cutting different metals and thicknesses, along with grinding and smoothing edges. Feedback is provided on cut precision, surface quality, and preparation to ensure optimal conditions for welding.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top