imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles of sustainable mechatronics design, emphasizing energy efficiency and resource management.
  • Analyze energy consumption across various mechatronic systems and processes through virtual simulations.
  • Optimize systems for energy efficiency, reduce waste, and enhance sustainability through interactive scenarios.
  • Assess the environmental impact of design choices, focusing on minimizing energy usage and maximizing cost savings.
  • Receive feedback on design decisions to improve energy efficiency and promote environmentally responsible mechatronic solutions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Post-Surgical Care and Wound Management

Teach students how to assist in post-surgical care, including wound management and supporting patient recovery using XR technology. Virtual scenarios will guide students through the proper techniques for caring for post-operative wounds, such as cleaning, dressing, and monitoring for infection. Additionally, students will learn how to safely transfer patients from the OR to the recovery room, with real-time feedback on patient care protocols, monitoring vitals, and recognizing potential complications.

Propeller and Rotor Blade Maintenance

Explore inspection, repair, and balancing techniques for propellers and rotor blades in both fixed-wing and rotary aircraft. Simulate tasks such as aligning blades, detecting damage, adjusting pitch, and applying aerodynamic principles. Receive feedback on balancing precision, repair quality, and power transmission efficiency.

Airway Management and Ventilation

Equip students with the skills needed for effective airway management and ventilatory support in critical patients through XR-powered simulations. Students will practice intubation, using bag-valve masks (BVM), inserting airway adjuncts, and managing oxygen levels in emergency respiratory situations.

Spacecraft Design and Orbital Mechanics

Dive into the design and analysis of spacecraft for space missions, focusing on key components like propulsion, thermal control, and communication systems. Use virtual tools to create satellites, space probes, and crewed spacecraft while mastering the principles of orbital mechanics. Learn to calculate orbital trajectories, understand gravitational effects, and simulate spacecraft maneuvering in space. Receive feedback on mission planning, fuel efficiency, and spacecraft stability in various orbits to optimize space exploration projects.

Cardiovascular Devices and Hemodynamics Simulation

Train students in the design and analysis of cardiovascular devices with a focus on hemodynamics and fluid flow through immersive XR simulations. Students will simulate blood flow dynamics and design key devices like stents, heart valves, pacemakers, and vascular grafts, optimizing performance and minimizing complications.

Avionics and Control Systems

Explore the design and implementation of avionics systems used in modern aircraft, focusing on navigation, communication, and flight control. Engage in virtual scenarios to configure complex avionics systems such as autopilot, inertial navigation systems (INS), and radar. Through interactive lessons, integrate sensors, gyroscopes, accelerometers, and other electronic components for precise control. Receive feedback on avionics system accuracy, reliability, and the analysis of flight data in real-time.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top