imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles of sustainable mechatronics design, emphasizing energy efficiency and resource management.
  • Analyze energy consumption across various mechatronic systems and processes through virtual simulations.
  • Optimize systems for energy efficiency, reduce waste, and enhance sustainability through interactive scenarios.
  • Assess the environmental impact of design choices, focusing on minimizing energy usage and maximizing cost savings.
  • Receive feedback on design decisions to improve energy efficiency and promote environmentally responsible mechatronic solutions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Geospatial Analysis and Remote Sensing

Explore the power of remote sensing technology and its application in civil engineering projects. Analyze satellite imagery and aerial photographs to map terrain, plan land use, and track urban development. Use geospatial data tools to detect changes in natural resources, land features, and environmental conditions. Receive feedback on data accuracy, interpretation, and the practical integration of this information into infrastructure planning.

Water Supply System Design and Installation

Learn to design and install water supply systems that provide clean water to buildings. This simulation offers virtual practice in designing and installing cold and hot water supply lines, selecting appropriate pipe materials like copper, PEX, or galvanized steel. It also includes connecting supply lines to fixtures, appliances, and water heaters. Real-time feedback is provided on water pressure, flow rates, and system performance.

Avionics and Control Systems

Explore the design and implementation of avionics systems used in modern aircraft, focusing on navigation, communication, and flight control. Engage in virtual scenarios to configure complex avionics systems such as autopilot, inertial navigation systems (INS), and radar. Through interactive lessons, integrate sensors, gyroscopes, accelerometers, and other electronic components for precise control. Receive feedback on avionics system accuracy, reliability, and the analysis of flight data in real-time.

Noise, Vibration, and Harshness (NVH) Control

Noise, Vibration, and Harshness (NVH) Control focuses on minimizing noise, vibration, and harshness (NVH) in vehicles to enhance driving comfort. Students will engage in virtual environments to analyze sources of noise and vibration in engine, transmission, and exhaust systems. The course includes interactive lessons on damping techniques, soundproofing materials, and vibration isolation, with feedback on NVH reduction, cabin comfort, and acoustics.

Steel Structure Design and Fabrication

Explore the intricacies of designing and fabricating steel structures for industrial buildings, towers, and infrastructure projects. Use virtual tools to create steel frames, beams, columns, and joints, with scenarios analyzing load-bearing capacity, material stresses, and connection stability. Receive insights on enhancing durability, optimizing fabrication techniques, and performing cost analysis for efficient project execution.

Finite Element Analysis (FEA) Simulation

Train students to perform stress, strain, and deformation analysis on mechanical components using Finite Element Analysis (FEA) through immersive XR simulations. The virtual environment allows students to apply loads, constraints, and boundary conditions to 3D models of mechanical components, providing interactive lessons on stress distribution, thermal effects, vibration analysis, and material failure points. Feedback is provided on the structural integrity, safety factors, and optimization of mechanical designs to improve understanding and decision-making in engineering design processes.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top