imaginX is used by many amazing schools and universities

University / College

Learning Objectives

At the end of this simulation, you will be able to:
  • Understand the principles of sustainable mechatronics design, emphasizing energy efficiency and resource management.
  • Analyze energy consumption across various mechatronic systems and processes through virtual simulations.
  • Optimize systems for energy efficiency, reduce waste, and enhance sustainability through interactive scenarios.
  • Assess the environmental impact of design choices, focusing on minimizing energy usage and maximizing cost savings.
  • Receive feedback on design decisions to improve energy efficiency and promote environmentally responsible mechatronic solutions.

How do virtual labs work?

Enhance students' involvement in science by immersing them in interactive learning scenarios. Create simulations for experiments, provide hands-on training in laboratory techniques, and convey theoretical concepts through captivating visual experiences to improve their overall long-term learning outcomes.

  • Access web-based simulations that are compatible with laptops, Chromebooks, tablets, and iPads, eliminating the need for software installation.
  • Incorporate a teacher dashboard for automated grading and monitoring of student progress.
  • Utilize embedded quizzes to assist students in mastering scientific content.
  • Comprehensive repository of educational materials, including learning resources, lab reports, videos, theory pages, graphics, and more.

Relevant Course Packages All Course Packages

Energy Systems and Power Generation

This XR simulation teaches students the principles of energy conversion and power generation systems, including the use of renewable energy sources. Through virtual simulations, students can explore various power generation systems, such as steam turbines, internal combustion engines, wind turbines, and solar panels. Interactive scenarios guide students in analyzing energy efficiency, heat loss, and optimizing power output, with feedback on energy conversion rates, sustainability, and overall system performance.

Sterilization and Disinfection Procedures

Immerse students in an XR-powered simulation to learn the critical processes of sterilization and disinfection. This training emphasizes the proper handling of surgical instruments, infection control, and the prevention of complications through adherence to sterilization protocols.

Robotics and Automation Simulation

Robotics and Automation Simulation course allows students to explore the principles of robotics and automation in industrial settings. Through interactive XR simulations, students can program robotic arms, manipulators, and other equipment to perform tasks such as welding, assembly, and material handling. Real-time feedback on performance, efficiency, and safety ensures a hands-on, engaging learning experience, preparing students for real-world automation challenges.

Grounding and Bonding Simulation

Learn proper grounding and bonding techniques to prevent electrical shock and ensure system safety. Through virtual simulations, students will install grounding rods, wires, and bonding systems for electrical panels, appliances, and equipment. Interactive scenarios will allow testing of grounding systems with virtual testers and multimeters, providing real-time feedback on grounding integrity, system safety, and adherence to NEC standards.

Commercial and Industrial Electrical Systems

Explore the differences between residential, commercial, and industrial electrical systems with a focus on larger-scale installations. Students will engage in virtual simulations of 3-phase power systems, industrial equipment wiring, and distribution panels. Through hands-on practice, students will connect high-voltage systems, install transformers, and manage large-scale wiring projects while receiving real-time feedback on power distribution, load balancing, and voltage regulation.

Surface Grinding and Finishing

Explore XR-based simulations for surface grinding and finishing operations. Students will interact with virtual surface grinders, simulating grinding processes on different materials to achieve precise flatness and superior surface finishes. Through scenarios involving the selection of grinding wheels, feed adjustments, and optimal workpiece setups, users can refine their skills in precision grinding. Feedback is provided on surface finish quality, material removal rates, and grinding accuracy, allowing users to enhance their machining abilities.

LMS Integration

imaginX seamlessly integrates with leading LMS (Learning Management Systems), enabling educators to track student performance and allowing students to maintain their work records. It is compatible with popular platforms such as Canvas, Blackboard, Moodle, Google Classroom, Schoology, Sakai, Brightspace/D2L, and can also be used independently of an LMS.

Platform Features

Unlimited users faculty & students
Unlimited users faculty & students
Simulations
Simulations
Pedagogy Experts
Pedagogy Experts
Gamification
Gamification
Multiplayer
Multiplayer
Networking
Networking
Assignments
Assignments
Auto Grading
Auto Grading
AI
AI
LMS Integartion
LMS Integartion
Go Back Top